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Presentation Outline 
•  Abstract (“for the record”) 
•  About your speaker’s institution, ARSC 
•  High level overview of where we are going: 

engineering progress towards a more data-
intensive and personalized world 

•  High level conceptual and scientific 
challenges 

•  Some practical ongoing efforts 
–  Information retrieval research 
–  Large-scale eigensystems 

•  Future plans 



Abstract 

Computational clusters in excess of 100TF have begun to approach the estimated 
computational capacity of the human brain.  Such systems theoretically could, with the 
right software, emulate human cognitive processes such as thought and memory.  In this 
talk, we will look at the specific topic of information search and retrieval, in which similarity 
among items may be considered as a fundamental human cognitive phenomenon.  From 
the perspective of data intensive computing systems, we would like to have information 
spaces (of systems) that are consistent with cognitive spaces (of humans).  In such 
systems, searching for information with a system would be akin to a human remembering 
that information.  However, modern document retrieval systems take shortcuts that greatly 
reduce needed computation, but at the expense of consonance between information 
spaces and cognitive spaces.  These include shortcuts on data representation (such as 
Boolean matching of search terms to documents) and shortcuts on the human information 
seeking experience (by not considering prior knowledge or temporal aspects of search).  
This talk will look at challenges and benefits of enhanced scale in size, throughput, 
representation, and user customization that, when applied, greatly expand data intensive 
aspects of information search and retrieval.  We envision information systems of the 
future where system information spaces are modeled more closely after human cognitive 
spaces. 



About ARSC 

ARSC’s state of the technology 
supercomputers provide 24/7 
accessibility for high-performance 
computing needs 

ARSC’s storage infrastructure provides 
redundant back-up, swift access and 
retrieval of archival data  

Helping scientists to seek understanding of our 
past, present and future by applying computational 
technology to advance discovery, analysis and 
prediction 



What happens… 

       When these… 
•   

    Are part of these? 
•   



What happens… 

       When this… Is directly connected 
to this… 



Answer: Human intellect is 
augmented by machine 

•  … With personalized and 
contextual data 

•  … With the ability to store and 
record our life experiences 
– Location-based (GIS ties), temporally 

connected 
– Audio/video experiences 
– Our information experiences: search 

history, information encountered 



 Sidebar: Recording human 
experience 

•  Audio/Visual bandwidth: TB/day 
•  Location tracking: where we are; tying 

experience to location in time and space 
•  Life’s information experiences 

–  Content we encounter through everyday 
interaction 

–  Documents viewed 
–  Our conversations, notes, calendars, etc. – 

already being digitized, but not yet integrated 
well with external data sources  

•  This engineering challenge quickly becomes 
an information storage and retrieval problem 

Steve Mann 



To Ponder: Information 

•  Is there knowledge in vast data 
stores?  What turns piles of data 
into knowledge? 
– My answer: the human, with his or her 

unique perspective.  In this sense, 
information is seen as subjective and 
emergent 
•  Our systems can help to turn data into 

information, by tying them to human experience 



The good news 

•  To make all this happen, 
– Scientists don’t need to invent 

artificial intelligence 
– We don’t need to deploy 

infrastructure: it’s already there 
(telephone & networking) 

– We don’t need to miniaturize 
devices (that’s happening 
already) 

– There are commercial and 
social forces at work, heading 
in a useful direction for us 



Building blocks 

•  We already have conceptual 
frameworks for augmenting 
human intelligence by machine 

Some examples, 
•  “Alternative neuromorphic 

computing architectures,” “brain 
state in a box” – with thanks to 
Richard Linderman of AFRL 

•  Minsky’s “Society of Mind,” which 
talks about mind as emergent, 
from many small parts.  Very 
interested in commonsense 
knowledge (i.e., data) 



Transition: Efforts by  
Your Humble Narrator 

•  Topic area: Information retrieval (i.e., Web 
search).  Large datasets, natural language 

•  Research goal: How can we make 
information retrieval so effective, it’s like 
remembering things you didn’t know? 

•  Part of my approach is to look at statistical 
ways we can have “information space” of 
systems match the “cognitive space” of 
human information seekers 



Recent Results 

•  ARSC systems used for data-intensive 
computing, and for large-scale eigensystems.  
These eigensystems are a numerical approach 
to build cognitive-like spaces from raw data 
input 
–  Data-intensive: 25TB dataset, 1.2G Web 

documents.  Work with MySQL, Tomcat, 
Lucene.  This is mostly for testing 
information retrieval algorithms and “divide 
and conquer” federated search 

–  Eigensystems: Using PETSc/SLEPc to look 
at large-scale relationships among terms 
and document 

PETSc logo 

Lucene logo 



Computational Methods 

•  Software used: Mostly custom.  But 
based on toolkits/libraries.  For 
eigensystems, lots of C/C++ 
(PETSc).   For search,  Java 
(Tomcat, Lucene), HTML, PHP, Perl; 
some MATLAB 

•  Computational performance: PETSc 
scaling beyond 256 cores.  Large 
sparse matrices (over 100Kx2M, 
various submatrices) sparse matrix 



Our Application Area:  
Text Retrieval 

•  We work with large sparse matrices 
(some symmetric, some rectangular) 

•  Representing collections of textual 
documents 
–  In our matrices, rows correspond to unique 

terms in a collection of documents.  Each 
document is represented by a column.  Thus, 
column cells are > 0 for terms that occur in 
that document and zero otherwise 

–  Since most terms do not occur in most 
documents, the matrices are sparse  

–  By solving eigensystems for the matrices, we 
are able to identify statistical relationships 
among terms (words) and documents 

Text REtrieval Conference 



Text Retrieval Goals for  
use of Eigensystems 

•  Assess term-term similarity. Useful for identifying 
synonyms (for search term expansion); helpful for 
recommending related terms 

•  Assess document-document similarity.  Useful for 
“more like these” queries 

•  Assess query-document similarity to generate 
and rank search results. An alternative to 
Boolean search sets (though much more 
computationally expensive) 
–  All these techniques are said to supplement 

(for example) Google’s methods, and have 
been found in various commercial and 
experimental text retrieval systems 

–  However, they are computationally expensive 

The eigenvectors are dense 
matrices, versus sparse term-
by-document matrices.  This 
reduces the utility of 
computational shortcuts used for 
simple Boolean query-document 
matching 



Our Matrices, the Data 

•  Derived mainly from the “gov2” test collection of the 
National Institute of Standards and Technology (NIST) 
Text REtrieval Conference (TREC) 
–  2 million Web documents from .gov 
–  20GB collection size 

•  We use the terms (i.e., vocabulary) from Google Gigaword 
collection of n-grams (1, 2, 3-grams; 4 and 5-grams are 
also available) 
–  Downselected to 645271 single-word terms (from 13.5M 

candidates) 
–  Gigaword vocabulary is available from the Linguistic Data 

Consortium (LDC2006T13) 
–  Over 1T tokens (words, phrases, sentences) total (this is very 

helpful for searching for multi-word queries) 



Our Matrices, the Numbers 

•  From 2M documents, we built 996 
subcollections based on hostname 

•  For today’s talk, we looked at 
some of the largest subcollections 
– We can combine subcollections, too 

file size subcollection nnz # columns 
(GB) (non-zeros)  (documents) 

2.2 gov2.dsub.1004 193,537,001 792,735 
3.9 gov2.dsub.1001 341,192,859 1,076,476 
3.9 gov2.dsub.1003 339,858,097 1,349,402 
4.6 gov2.dsub.1000 408,094,751 835,162 
5.1 gov2.dsub.1002 451,306,104 1,449,770 
8.4 gov2.dsub.1005 749,287,610 1,911,638 
8.9 gov2.dsub.1006 791,164,201 2,799,172 

.94 correlation 
NNZ with # cols 



Large Eigensystems: 
Run Times (hours) 

file size subcollection 128 procs 256 procs 512 procs  1024 procs 
(GB) hours hours hours hours 

2.2 gov2.dsub.1004 timed out 4.99 2.88 crashed :( 
3.9 gov2.dsub.1001 “” - - - 
3.9 gov2.dsub.1003 “” - - - 
4.6 gov2.dsub.1000 “” 3.11 4.44 crashed :( 
5.1 gov2.dsub.1002 “” 5.45 - - 
8.4 gov2.dsub.1005 “” - - - 
8.9 gov2.dsub.1006 “” timed out 7.27 crashed :( 

•  All runs on ARSC-DSRC’s pingo, a 
3456-core Cray XT5 

– These matrices are big enough to require 
over 128 processors to complete an 
eigensystem in 8 hours 



Smaller Eigensystems:  
Run Times (Values) 

Matrix Size 
(mb) 

# Processors 23 33 34 38 44 50 84 1700 
4 65.539 176.715 173.555 216.100 645.971 1013.416 1252.171 
8 27.870 111.796 71.965 81.732 324.939 515.944 484.852 

16 9.028 55.896 29.956 28.049 106.32 207.523 144.804 
64 1.843 12.441 3.523 2.200 8.678 17.539 13.912 4065.824 

128 2.098 5.805 2.562 2.100 3.487 5.679 5.747 1006.609 
256 5.890 4.028 3.751 5.694 3.801 4.222 4.773 271.789 

•  These were far smaller subcollection matrices we ran to 
get timing curves.  No problems (MPI or otherwise) 

•  Conclusion: PETSc/SLEPc scales linearly to 64 
processors for these small matrices, but very short run 
times at large processor counts yield flattened 
performance curves 



Smaller Eigensystems:  
Run Times 

X=nprocs, y=log(cpu time in seconds), 
Lines are matrix size in MB 



Visualizing Text Relations: 
Historical 

•  Joseph Woelfel and colleagues 
measured concept relations 
using paired-comparison 
surveys given to humans.  The 
output was akin to a term-term 
matrix 

•  In this example, note that 
synonyms are not actually the 
same (pigs, boar, hogs and 
swine) 

•  Data collection was labor 
intensive; analysis was 
essentially the same as our 
eigensystems analysis 



Visualizing Text Relations: 
Current Results 

•  After Charles Osgood’s 
(1957) “semantic 
differential” scale for 
human concept space, we 
looked at relations among: 
good, bad, active, passive, 
strong, weak 

•  Plot shows the 1st three 
eigenvectors for 
subcollection 1322 

•  Indeed, active/passive and 
strong/weak appear nearly 
orthogonal, in this space 



Future Plans: Computational 
•  Continue efforts  towards larger 

matrices with larger processor 
counts 
–  Once these eigensystems are 

computed, they can be efficiently 
represented for text retrieval.  
Computing eigensystems for very large 
collections will enable further R&D 

–  How long until these content 
refactorizations and integrations are 
happening on our own personal 
devices, with streamed live contextual 
data? 



Future Plans: Conceptual 

•  Integrate “cognitive space” 
approaches, with the goal of 
presenting document collections 
as elements of exosomatic 
memory 
–  Potentially relevant for intelligence 

community and defense 
environments.   

–  Semantic Web concepts and efforts 
will help. 

•  Keep working on content and 
personalization, through Project 
Gutenberg and other forums 



“Thanks” to many 

•  In ARSC and UAF 
–  Don Bahls and other consultants, co-

workers 
–  Kylie McCormick, multi-summer intern 
–  Science staff & students, including Chris 

Fallen, John Styers, many others 
•  HPCMP/DoD scientists, users & support 
•  ACCESS10 & NCSA: Looking forward to 

collaborations and discussions 


